Five Ways AI And Machine Learning Can Enhance Cybersecurity Strategy
Artificial Intelligence (AI) and its essential component machine learning are causing a stir in practically every industry from marketing to education. It’s no wonder designers and tech developers are finding ways to use the benefits of automated technologies to improve cybersecurity infrastructure and defend against increasingly complex and numerous cyber threats. That being said, AI is not a cure-all for all cybersecurity threats. At the end of the day, it’s a piece of technology, a tool designed to help companies work better, so, like any tool, it has to be applied with consideration if it’s going to work. With that in mind, here are some ways in which AI (or, more precisely, machine learning) is being used to enhance cybersecurity measures.
Robot Wars
“One of the reasons machine learning is so useful in combatting cyber attacks is that the attackers are already using machine learning against you,” says Flora Oglivy, a cybersecurity specialist at Writemyx.com and Nextcoursework.com. “Cybercrime using AI technology is so powerful because it’s tireless, it can continually test defenses until they find a chink in the armor. Employ machine learning in your defenses, however, and suddenly you have an indefatigable security guard to defend against the indefatigable thief.”
Marking Out Malware
Another use case for machine learning is in altering you to the presence of malware. Thanks to the work of thousands upon thousands of cybersecurity professionals over lifetimes of work, we have a good amount of examples of malware at our fingertips. Once a new example is discovered it’s easily labeled as malicious technology and can be removed from a system. Machine learning thrives on this kind of data: a simple yes or no question based on finding characteristics. As a result, supervised machine learning systems are great for sorting between regular applications and malware versions and can alert administrators whenever a malicious program is identified.
Sniffing Out Spam
The same concept goes for spam identification technology. Mark Chapel, a tech blogger at Britstudent.com and Australia2write.com, asks “have you ever wondered why your mail carrier can identify spam emails? The answer is: machine learning. Algorithms trained on typical spam emails help to identify unwanted messages and automatically sort them out of your inbox. That means, whenever you mark an email in your inbox as spam, you’re actually helping to train the bot.” Google’s spam filter is a good example of a powerful machine learning technology in action. According to a study last year, the search engine employs hundreds of rules to sort spam from regular emails, using optical character recognition (OCR) to identify keywords and phrase structures common across spam emails.
Scalable Technology
With machine learning technology the sky’s the limit, meaning they’re able to scale with a company’s security needs as the data they handle grows. In fact, the longer an AI system is in place and the more data it handles, the better at its job it will get, meaning investing in a machine learning aspect to your cybersecurity strategy is only going to pay back dividends as time goes on. I say the sky’s the limit, but that’s only hypothetically; in practice, the limit is data storage. Thankfully, machine technology lives very comfortably in the cloud, so storage space becomes less of a problem and the system can continue to expand unimpeded.
Tools, Not Cures
All of this notwithstanding, If you hope to install a machine learning system to learn your attackers’ moves and combat their breaches by itself then you’ve not understood the point of AI. All of these applications are not magic fixes, they require significant work to set up and maintain, which is why any AI solution is a tool, not a cure. Perhaps at some point in the future, we can develop AI machines powerful enough to create other AI machines, at which point we may well be looking at the singularity end of existence. However, until then, machine learning relies on clever applications and dedicated programmers. The technology is practically a blank slate, how you apply it depends on your cybersecurity needs and the data you train the system on.
Katrina Hatchett is a tech blogger at Academic Brits and writer for Essay Writing Service. She works with companies to identify and solve project issues, and her goal is to improve the effectiveness of our communication. She also writes for PhDKingdom.com about the future of machine learning.
Most Recent Articles
You Might Be Interested in Reading These Articles
Android Nougat: Google OS' Tightest Security Yet
Officially released a month ago, the latest Google mobile OS version has made a few major adjustments, particularly in its security features. The search giant has improved the security in the Android Nougat (or also known as Android N) from strengthening the Android itself to some tools that helps developers to keep things as it is while users install apps.
Published on November 15, 2016
The Top 5 Mobile Application Security Issues You Need to Address When Developing Mobile Applications
Most recently, a lot of established companies like Snapchat, Starbucks, Target, Home Depot, etc. have been through a PR disaster. Do you know why? Simply because some attackers out there found flaws in their mobile apps and could exploit them. In fact, by the end of this year, 75% of mobile apps will fail basic security tests.
Published on November 03, 2015
Industrial IoT Security: Cyber Security Implications for IT-OT Convergence
In June 2017, two information security firms researching the 2016 hack of the electricity grid in Ukraine announced that they had identified the malicious code used to shut down power stations and leave thousands of households and businesses in darkness for several hours. The malware used to target the Kiev power grid has been named Industroyer, and it serves as a sobering reminder about the dangers faced by the Industrial Internet of Things (IIoT).
Published on September 05, 2017